
TypeScript

Cheat Sheet

Key points Full name is “type alias” and are used
to provide names to type literals

Supports more rich type-system
features than interfaces.

These features are great for building libraries, describing existing
JavaScript code and you may find you rarely reach for them in
mostly TypeScript applications.

^ Interfaces can only describe
object shapel

^ Interfaces can be extended by

^ s
interface comparison checks
can be faster.

Much like how you can create
variables with the same name in
different scopes, a type has
similar semantics.

TypeScript includes a lot of
global types which will help you
do common tasks in the type
system. Check the site for them.

A tuple is a special-cased array with known
types at specific indexes.
A tuple is a special-cased array with known
types at specific indexes.

Terser for saving space, see Interface Cheat Sheet for
more info, everything but ‘static’ matches.

Type
Type vs Interface

Think of Types Like Variables

Build with Utility Types

type JSONResponse = {

 : number;

 : number;

 ?: boolean;

 : (retryTimes: number) => void;

 (retryTimes: number): void;

 (): JSONResponse

 [: string]: number;

 new (s: string): JSONResponse;

 readonly : string;

}

version

payloadSize

outOfStock

update

update

key

body

/** In bytes */

// Field

// Attached docs

//

// Optional

// Arrow func field

// Function

// Type is callable

// Accepts any index

// Newable

// Readonly property

Object Literal Syntax

Union TypePrimitive Type

Object Literal Type

Tuple Type

Type from Value

Type from Func Return

Type from Module

Intersection Types

Type Indexing

Conditional Types

Template Union Types

Mapped Types

Describes a type which is one of many options,
for example a list of known strings.

Useful for documentation mainly Re-use the type from an existing JavaScript
runtime value via the typeof operator.

Re-use the return value from a
function as a type.

A way to merge/extend types

A way to extract and name from

a subset of a type.

Acts as “if statements” inside the type system. Created
via generics, and then commonly used to reduce the
number of options in a type union.

A template string can be used to combine and
manipulate text inside the type system.

Acts like a map statement for the type system, allowing
an input type to change the structure of the new type.

type Size =

| | "small" "medium" "large"

const

type typeof

 data = { ... }

 Data = data

const

type

typeof

function

 createFixtures = () => { ... }

 Fixtures =

 ReturnType< createFixtures>

 test(fixture: Fixtures) {}

const data: import().data"./data"

type Location =

 { x: number } & { y: number }

// { x: number, y: number }

type

type

Response = { data: { ... } }

 Data = Response[]
"data"

// { ... }

type

 extends

 never

type

type

HasFourLegs<Animal> =

Animal { : 4 } ? Animal

:

Animals = Bird | Dog | Ant | Wolf;

FourLegs = HasFourLegs<Animals>

legs

// Dog | Wolf

type | ;

type | ;

type

 ${ ${ } ;

SupportedLangs =

FooterLocaleIDs =

AllLocaleIDs =

SupportedLangs} FooterLocaleIDs

"en" "pt" | "zh"

"header" "footer"

` _ _id`

// "en_header_id" | "en_footer_id"

 | "pt_header_id" | "pt_footer_id"

 | "zh_header_id" | "zh_footer_id"

type

type

in

type

Artist = { name: string, bio: string }

Subscriber<Type> = {

 [Property keyof Type]:

 (newValue: Type[Property]) => void

}

 ArtistSub = Subscriber<Artist>

// { name: (nv: string) => void,

// bio: (nv: string) => void }

Loop through each field
in the type generic
parameter “Type”

Sets type as a function with
original type as param

type Data = [

 location: Location,

 timestamp: string

];

type Location = {

 x: number;

 y: number;

};

type

type

 SanitizedInput = string;

 MissingNo = 404;

declaring it multiple times

