
TypeScript 

Cheat Sheet

Key points

Used to describe the shape of 
objects, and can be extended by 
others. 

Almost everything in JavaScript is 
an object and interface is built 
to match their runtime behavior.

Almost everything in JavaScript is 
an object and interface is built 
to match their runtime behavior.

Interface interface

  new

 JSONResponse extends Response, HTTPAble {


  : number;



  

  : number;



  ?: boolean;



  : (retryTimes: number) => void;


  (retryTimes: number): void;  



  (): JSONResponse


  


(s: string): JSONResponse;



  [ : string]: number;



  readonly body: string;


}

version

payloadSize

outOfStock

update

update

key

/** In bytes */


Common Syntax

Date, Error, Array, Map, 
Set, Regexp, Promise

boolean, string, number, 
undefined, null, any, 
unknown, never, void, 
bigint, symbol

Object:


{ field: string } 

Function:


(arg: number) => string 


Arrays:


string[] or Array<string>


Tuple:


[string, number]

Object, String, Number, Boolean

Optionally take properties from 
existing interface or type

This property might not be on the object

JSDoc comment attached to show in editors

These are two ways to describe a 
property which is a function

You can call this object via () - ( functions 
in JS are objects which can be called )

Any property not described already is assumed 
to exist, and all properties must be numbers

You can use new on the object 
this interface describes 

Tells TypeScript that a property 
can not be changed

Common Built-in JS Objects

Built-in Type Primitives

Type Literals

Avoid

interface Ruler {


    get size(): number


    set size(value: number | string);


}


const r: Ruler = ...


r.size = 12


r.size = "36"


Get & Set

Usage

Objects can have custom getters or setters

interface

interface

 APICall {


  data: Response


}



 APICall {


  error?: Error


}


interface

class implements

 Syncable { sync(): void }


 Account  Syncable { ... }

Extension via merging

Class conformance

Interfaces are merged, so multiple declarations will 
add new fields to the type definition.

interface Expect {


    (matcher: boolean): string


    (matcher: string): boolean;


}

Overloads

A callable interface can have multiple definitions 

for different sets of parameters

interface APICall<Response> {


  data: Response


}

interface APICall<Response extends { status: number }> {


  data: Response


}

Generics

Usage

const api: APICall<ArtworkCall> = ...


api.data // Artwork

const api: APICall<ArtworkCall> = ...


api.data.status

Usage

Type parameter

Sets a constraint on the type 
which means only types with a 
‘status’ property can be used

Used here

Declare a type which can change in your interface

You can constrain what types are accepted into the generic 
parameter via the extends keyword.

You can ensure a class conforms to an interface via implements:


